
International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1035
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Abstract— Maintaining data reliability in public cloud acts a vital role
in cloud computing. Cloud storage auditing solves the complexity of data
reliability in public cloud. In progress auditing protocols are all standard on
the statement that the client’s private key for auditing is completely
protected. However, such statement probably will not for all time be
seized, because of the probably feeble logic of protection and/or low
protection settings at the consumer. If such a secret key for auditing is
uncovered, nearly every one of the existing auditing protocols would
certainly develop into incapable in the direction of exertion. In this paper,
we meeting point happening this new fraction of cloud storage auditing.
We examine how to decrease injure of the client’s key coverage in cloud
storage auditing, and provide the primary sensible solution for this original
difficulty setting. We celebrate the meaning and the refuge model of
auditing protocol with key- coverage flexibility and suggest such a
protocol. In our plan, we utilize the preorder traversal technique and the
binary tree structure to inform the private keys for the consumer. In
addition to expand a novel authenticator structure to sustain the onward
security and the assets of chunk less verifiability. The refuge proof and
the presentation examination show that our proposed protocol is safe and
proficient.

Keywords – key exposure, conflict, complexity, Authentication

I. INTRODUCTION

UDITING cloud storage is used to authenticate the
honesty of the data stored in public cloud, which is one

of the significant protection techniques in cloud storage. In
latest years, auditing protocols for cloud storage have
concerned much concentration and have been researched
exhaustively. These protocols focus on a number of dissimilar
facets of auditing, and how to accomplish high bandwidth
and computation effectiveness is one of the important
distresses. For that purpose, the Homomorphic Linear
Authenticator (HLA) technique that supports block less
verification is explored to reduce the overheads of
computation and communication in auditing protocols, which
allows the auditor to authenticate the honesty of the data in
cloud without retrieving the whole data. Many cloud storage
auditing protocols like have been proposed based on this
technique. The privacy protection of data is also an important
aspect of cloud storage auditing. In order to reduce the
computational trouble of the client, a third-party auditor
(TPA) is introduced to help the client to periodically check the

integrity of the data in cloud. However, it is possible for the
TPA to get the client’s data after it executes the auditing
protocol multiple times. Auditing protocols are designed to
ensure the privacy of the client’s data in cloud. Another aspect
having been addressed in cloud storage auditing is how to
support data dynamic operations. Encompass proposed an
auditing protocol maintaining entirely dynamic data
operations including modification, insertion and deletion.
Auditing protocols know how to also sustain dynamic facts
operations. Additional aspects, such as alternate auditing,
user revocation and eliminating credential management in
cloud storage auditing have also been considered. However
many investigate workings on cloud storage auditing have
been done in recent years, a dangerous refuge problem. For
some reasons, the user’s secret key for cloud storage auditing
will be disclosed to cloud. Initially managing key is a full
difficult process, because some various elements are included
like user training, system policy and so on. One client needs to
manage lot of keys for finish various security problems. But
these are very sensitive tasks. Because, if any mistakes are
happened by clients, it will be going to be a big issue like the
keys are disclosed to cloud. But it is a common one like, the
client choose the cheap software tools to implement his
security for reducing his economical factors. And then, the
client may possible to attack by security attacks. Compared to
standard organization, normal client cannot to provide a
highly secured protection. And also there is a chance to ignore
the protection to their system or unfortunately download the
virus software and files from internet. Those cases are
intended the hackers to hack their secret keys. Finally, cloud
also has some benefits to give the known secret key to the
hackers for storage auditing. So we need to aware on lot of
situations. Each and every process should be very sensitive.
Both security and cost effectiveness is the big issues in cloud
computing. Particularly, if the keys are disclosed to cloud, it
may forge their servers and reproduce the fraud data and
import them into the servers. It will hide the data loss
situations from servers. In a critical situations, it can even
remove the user’s data which are infrequently accessed to

Auditing Cloud Storage by Key
Coverage Conflict in Cloud

Abhiram Srinivasan, Bharat Mallala, Sree Varun

A IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1036
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

save the space in storage area, even do not thinking about
unsuccessful to give the auditing protocol started by the
client. Surely, the secret key disclosing for the auditing
process could be dangerous for the users of cloud storage
applications. And knowing the way to handle the situation of
disclosing secret key of the users is a very big issue. Our
existing system did not consider those dangerous situations
and also their technique is not auditing the keys correctly. In
our system, we notice on how to decrease injure in the clients
key disclosing in cloud data auditing. Our aim is to model a
cloud storage auditing protocol along with the key exposure
flexibility. Many of the new challenges are discussed below
for new problems gives in many different deals. Initially,
using the existing solutions of revocation keys to cloud is not
the fact one. This is because, the client need to change the
secret key and need to regenerate the previously stored data’s
authenticator when the client’s key was exposed instead of
auditing. The process contains the downloading of whole data
from cloud, re-uploading the contents again to the cloud,
generating new authenticators all of above can be boring ad
awkward. In addition, it cannot assure that the real data of
cloud provider when the client re-produces new
authenticators. Then, directly adjusting typical key evolving
process is also not the correct one for proposed problem
setting. It can direct to downloading all of the actual files
block when the authentication process is continued. This is
partial, because this process is ill-assorted with block less
authentication. The proposed authenticators leading to
inappropriately high computation cannot be combined, and
communication cost for the cloud storage auditing. Our
contributions are summarized as follows.

1) We start the initial study on how to get the key-exposure
flexibility in the cloud auditing protocol and starts new
technique as protocol of auditing along with the key-exposure
resiliencies. In that protocol, modifying or deleting client’s
data saved in cloud in earlier time periods can also found,
even if the cloud acquire the user’s present private key for
cloud storage auditing. This very crucial issue is not notified
before by existing auditing protocol designs. We further
sanctify the security model and the definition of key-exposure
resilience with auditing protocol for cloud storage auditing.

Fig 1. System Model

2) We analyze and model the initial useful auditing
protocol with existing key-exposure resilience for cloud
storage. To implement our aim, we utilize the structure of
binary tree in an existing works on various cryptographic
designs, to renew the private key of the client. This binary tree
structure may be considered as a different of the tree structure
used in the existing HIBE technique. And also, the pre-order
traversal technique is utilized to combine each node of a
binary tree in separate time period. In our proposed method,
the stack structure is used to recognize the binary tree’s pre-
order traversal. We also model a novel authenticator
sustaining the property of block less authenticity and the
forward security.

3) We demonstrate our protocol’s security power in the
dignified security model, and validate its performance
through concrete asymptotic analysis. In fact, the proposed
system only combines realistic overhead to improve the key-
exposure resilience. We also demonstrate that our proposed
model can be improved to support the third party auditor,
slothful update and various sectors.

The rest of the paper organized as follows: In section II, we
present our system model, description, security model and
preface of our work. Then, we provide concrete details of our
protocol in section III. The security theorem and efficiency
evaluation are given in section IV. Section V gives further
discussions. We terminate the paper in section VI.

II. PROBLEM FORMULATION

A. System Model

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1037
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

We demonstrate an auditing system for secure authenticate
cloud storage. The system includes two entities: the client
(Data/Files owner) and the cloud. The client generates data,
document and upload those data along with the
corresponding authenticators to the cloud. The cloud stores
these files for the user (client) and gives download service if
the user wants. Each data file is furthermore split into
multiple blocks. For the ease of description, we guess that the
user also acts a vital role of auditor in our system because our
system also supports for TPA. The user can frequently audit
whether his data files in cloud are correct or not. The existence
of data files stored in the cloud is split into t+1 time periods. In
our system, the user will modify his private key for cloud
storage auditing in the conclusion of each time period, but the
public key is the static one. It cannot be modified. The cloud is
permitted to get the user’s private key for cloud storage
auditing in one particular time period. That means the private
key exposure can occur in this system model.

B. Security Model

a) The description of key exposure resilience for auditing
protocol
Definition 1(Key exposure resilience for auditing protocol): Key
exposure-resilience for auditing protocol is done by five
algorithms (SysSetup, UpdateKey, AuthGen, ProofGen, and
ProofVerify) these are explained in the following context.

1) SysSetup (1k,T) → (PK,SK0): This SysSetup algorithm
is a probabilistic algorithm that takes input as time
periods T, a security parameter k and creates the
client’s secret key SK0 and public key PK. It is the
client side process.

2) KeyUpdate(PK,i,SKi) → (SKi+1): Updating algorithm
process for key is a probabilistic algorithm that takes
input current time period i, client’s secret key SKi,
and generate new secret key SKi+1 for the coming
period i+1 and public key PK. This algorithm is client
side process.

3) AuthGen(PK, i, SK i , F) → (Φ): this algorithm is a
probabilistic algorithm which takes as input the
current period i , the public key PK, a file F, and a
client’s secret key SK i creates the set of
authenticators Φ for F in time period i. This algorithm
is also client side process.

4) Proof Gen(PK, i, Challenge, F, Φ) → (P): this
algorithm is a probabilistic algorithm which takes as
input the public key PK, a challenge a file F , a time

period i , and the set of authenticators Φ, and
generates a proof P which means the cloud possesses
F. This algorithm is also cloud side process.

5) Proof Verify(PK,i,Challenge, P) → (“True” or
“False”): this algorithm is a deterministic algorithm
which takes as input a time period i , the public key
PK, a challenge and a proof P, and returns “True” or
“False”. This algorithm is run by the client.

b) Security Model

Our security model considers the concept of the data
possession property and forward security. In Table I, we show
a game to describe an adversary A beside the security of Key
resilience process for auditing protocol. Exclusively, above
game is composed of the following stages:

1) Setup Phase.
The client runs the SysSetup algorithm to generate initial
client’s secret key SK0 and the public key PK. The client sends
PK to an adversary and keeps SK0 himself. Set time period i =
0.
2) Query Phase.
Adversary running in this phase can feasible to query as
follows.
Authenticator Queries. Adversary can inquiry the
authenticators of the chunks it chooses in time period i. It can
flexible to choose a series of blocks m1. . .mn, and sends them
to the client. The client computes the authenticators
for mj (j = 1, . . . , n) in time period i , and sends them back to
adversary. Adversary saves all blocks F = (m1 . . . mn) and
their corresponding authenticators. Set time period i = i + 1. At
the end of each time period, adversary can choose to still
continue in query phase or move to the break-in phase.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1038
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

3) Break-in Phase.
This phase models the possibility of key exposure. Set the
break-in time period b=i. The client creates the private key
(Secret key) SKb by the KeyUpdate algorithm and sends it to
adversary. In Challenge Phase, the client sends a challenge
and a time period i ∗(i ∗ < b). He also requests the adversary
to provide a proof of possession for the blocks of file F = (m1,. .
.,mn) under Challenge in time period j ∗, where 1 ≤ sl ≤ n, 1 ≤ l
≤ c, and 1 ≤ c ≤ n.
4) Forgery Phase.
Adversary outputs a proof for verifiability P for the blocks
indicated by challenge in the period of time i*, and returns P.
If function verify(PK, i*, Challenge, P)=”True”, after that
adversary wins in that mentioned game. The described
security model notes that an A(adversary) cannot cheat a
valid proof for a particular period of time to key disclosure
without owning all the block values corresponding to a
provided challenge, if it cannot imagine all the missing bocks.
The A (adversary) can be provide a private key for auditing in
the key-disclosure in break-in time period. Evidently, the A
(adversary) does not want to query the authenticators after or
in the key-disclosure period of time because it can execute all
private keys after this period of time using the uncovered
secret key. The aim of the adversary (A) is to build a valid
proof of ownership P for the blocks signified by challenge in
the particular period of time i*. Definition 2 examines that
there presents a knowledge Extractor permitting the
extraction of the challenged block of files whenever adversary
can generate a valid proof of ownership P in time period i*.
Definition 3 denotes the finding ability for auditing protocol
that verifies the cloud sustains the blocks that are not deal
with high probability.

Definition 2 (Key Disclosure (Exposure) Resistance): We declare
an auditing protocol is key exposure(disclosure) resistant if
the coming condition keeps: when an adversary in above
game that can cause the client to accept its verifications with
non-negligible probability, there presents an efficient
knowledge extractor, which can extract the challenged block
of files apart from possibly with negligible probability.

Definition 3 (fundability): We declare an auditing protocol is (ρ,
δ) found able (0 < ρ, δ < 1) if, given a fraction ρ of corrupted
blocks, the probability that the corrupted blocks are found is
at least δ.

III. PROPOSED PROTOCOL

We initially examine two basic solutions for the key-
disclosure problem for auditing the cloud storage before we
provide our protocol. The starting one is naïve solution, which
in fat cannot easily solve this problem. The following one is
better solution than the before one, which can resolve this
problem but has a huge overhead. They are both not practical
when substituted in realistic settings. After that we provide
our protocol that s more effective and efficient than the both
existing solutions.

A. Naïve solution

In this method, the user uses the traditional key revocation
method. Once the user knows his private key and the
regarding public key. At the same time, user produces one
newly generated public key and private key, and uses
certificate update to disclose the newly generated public key.
The authenticators of the data already saved in cloud,
Though, all want to be updated because the existing private
key is no high secure. Thus, the user wants to download all
his data stored form the cloud, give new authenticators for
users using the new private key, and then save new
authenticators to the cloud. Definitely, it is a difficult
procedure, and uses lot of resources and time. Additionally,
cloud storage auditing private key is already known to cloud
and also the authenticators too known to cloud. It is very
complex for the client to sure the authenticators and the
accuracy of downloaded data from the cloud. Finally,
reproducing public key and private key cannot fully solve the
problem.

B. Slightly Better Solution

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1039
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

The client originally produces a series of public keys and
secret keys: (PK1,SK1), (PK2,SK2), . . . , (PKT ,SKT). Let the
permanent public key be (PK1, . . . , PKT) and the secret key
in time period j be (SK j , . . . , SKT). If the client uploads
records to the cloud in time period j , the client uses SK j to
subtract authenticators for these records. Then the client
uploads files and authenticators to the cloud. While auditing
these files, the client uses PKj to verify whether the
authenticators for these archive are really generated from end
to end SK j . When the time period modify from j to j + 1, the
client erase SK j from his storage. Then the new secret key is
(SK j+1. . . SKT). This explanation is obviously better than the
naive solution. Note that the keys SK1, . . . , SK j−1 have been
deleted through or before time phase j . So from this period
elapsed, the cloud cannot forge any authenticator uploaded in
earlier time periods, even if the secret key (SK j , . . . , SKT) in
time period j for inspection is uncovered. It means the obscure
cannot change the client’s data and forge any authenticator
that can be established under PKt (t < j) whilst it get the
client’s secret key in time period j . Though, the drawback of
this explanation is the following: the public key and the secret
key have to be extremely extensive and linear with the total
figure of possible time periods T, which is imaginary to well
over the lifetime of information to be stored in the cloud. As
the unremitting trend of immigration to cloud, it is not hard to
envision the T value to be very large, making such linear
overhead practically unacceptable.

C. Our Cloud Storage Auditing With Key-Exposure Resilience

Our goal is to propose a convenient auditing protocol with
key-exposure resilience, in which the equipped complexity of
key size, multiplication overhead and announcement
overhead ought to be at most sub linear to T. In classify to
achieve our goal, we use a binary tree structure to assign time
periods

Fig. 2. An example of how to associate the nodes with time
periods in a binary tree with depth 4.

Fig. 3. An example to show what elements are included in SK j
(0 ≤ j ≤ 9) when l = 4.
and connect periods with tree nodes by the pre-order traversal
method [24]. The secret key in apiece time period is controlled
as a stack. In each time period, the secret key is rationalized by
a forward-secure method [28]. It guarantee that any
authenticator produce in one time period cannot be compute
beginning the secret keys for any extra time period later than
this one. Besides, it helps to ensure that the difficulty of keys
size, calculation overhead and announcement overhead are
only logarithmic in total numeral of time periods T. As a
result, the auditing procedures achieve key-exposure
flexibility while rewarding our competence requirements. As
we will show later, in our protocol, the client can audit the
veracity of the cloud data still in comprehensive manner, i.e.,
without rescue the entire data starting the cloud. As same as
the key-evolving machinery [21]–[23], our proposed
procedure does not regard as the key exposure conflict during
one time period. Below, we will give the meticulous depiction
of our core practice.

D. Description of Our Protocol:

1) SysSetup: Input a security parameter k and the total time
period T. Then
 a) Run IG(1k) to generate two multiplicative groups G1, G2 of
some prime order q and an admissible pairing ˆe : G1 × G1 →
G2.
b) Choose cryptographic hash functions H1 : G1 → G1, H2 : {0,
1}∗ × G1 → Z∗q and H3 : {0, 1}∗ × G1 → G1. Select two
independent generators g, u ∈ G1.
c) The client selects ρ ∈ Z∗q at random, and computes R = gρ
and S = H1(R)ρ .

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1040
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Fig. 4. An example to show the stack changes from time
period 0 to time period 9 when l = 4.

d) The public key is PK = (G1, G2, ˆe, g, u, T, H1, H2, H3, R).
Set X0 = {(S, R)} and 0 = ∅ (where ∅ is null set). The initial
secret key is SK0 = (X0,0).
 2) KeyUpdate: Input the public key PK, the current time
period j and a secret key SK j . Denote the node associated
with period j with a binary string wj = w1 · · ·wt .
As we have mentioned in this section, X j is organized as a
stack which consists of (Swj , Rwj) and the key pairs of the
right siblings of the nodes on the path from the root to wj.
The top element of the stack is (Swj , Rwj). Firstly, pop (S wj , Rwj
) off the stack. Then do as follows: a) If wj is an internal node
(Note wj+1 = wj0 in this case), then select ρwj0, ρwj1 ∈ Z∗q, and
compute Rwj0 = gρwj0 , Rwj1 = gρwj1 ,
 Swj0 = Swj · H1(R)ρwj0hwj0 and Swj1 = Swj ·H1(R)ρwj1hwj1 ,
where hwj0 = H2(wj0, Rwj0) and hwj1 = H2(wj1, Rwj1). Push
(Swj1, Rwj1) and (Swj0, Rwj0) onto the stack orderly. Let X j+1
denote the current stack and define j+1 = j {Rwj0}. b) If wj is a
leaf, define X j+1 with the current stack. i) If wt = 0 (Note that
the node wj+1 is the right sibling node of wj in this case),
Then set j+1 = j {Rwj+1} − {Rwj } (Rwj+1 can be read from the
new top (Swj+1 , Rwj+1) of the stack). ii) If wt = 1 (Note that
wj+1 = w1 in this case, where w” is the longest string such that
w0 is a prefix of wj), then set j+1 = j {Rwj+1} − {Rw0, Rw01, . . . ,
Rwt }. Finally, Return SK j+1 = (X j+1,j+1). We give an case to
show the stack modify from time period 0 to time period 9
while l = 4 in Fig. 4. As shown is Fig. 3, the time periods j (
j=3,4,6,7) correspond to the leaves of the binary tree in this
example. So the KeyUpdate algorithm ought to run b and c
steps in these time periods. While added time periods j (
j=0,1,2,5,8,9) be in contact to the internal nodes of the binary
tree. So the KeyUpdate algorithm should run a and c steps in
these time periods. The changes of Ὡj (0 ≤ j ≤ 9) are shown as
follows.

 Here, (j, Challenge) pair is given by the auditor, and then
used by the cloud. An aggregated authenticator is calculated
by cloud Φ = (i, U, σ, Ω,j), where i . It also
calculates the linear combination of sampled blocks

. It then sends the public key along with the file
tag as the response proof of storage accuracy to the client.

5. Proof Verify: Input the time period j, challenges challenge,
public key and a proof P. These are all notice the node, that is
connected with the period i. The user parses the values. Then
the user checks the integrity of time, name by verifying the file
tag. Then, the user checks the following conditions.

If it doesn’t holds, returns “False”, otherwise returns “True”.

IV. SECURITY AND PERFORMANCE

A. Security analysis
Theorem 1 (Accuracy): For each random challenge and one
valid proof P, the ProofVerify algorithm always returns the
value true.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1041
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

B. Performance analysis

 In Table II, we provide the effectiveness assessment between
our protocol and existing protocol based on BLS signature
method. We select existing protocol as a benchmark is mostly
because the manufacture of it is generally analyzed as very
professional. It is also the most associated to our manufacture.
Here, Te denotes the time costs of Tp and exponentiation on
the group G1denotes the time costs of bilinear pairing from
G2 to G1. Other processes like the multiplication on G1, set
operations, stack operations, the operations on Zq and G2 and
hashing operations are negated because they just donate omit
table computation costs. Note that it is natural for our
protocol to add more transparency than existing protocol in
order to realize the extra key-exposure flexibility. Because we
utilize the pre-order traversal technique and binary tree
structure to connect the time periods and update secret keys,
as shown in Table II, our protocol realizes nice performance.
The costs of the KeyUpdate algorithm, SysSetup algorithm,
the AuthGen algorithm, the Proof Gen algorithm are
independent of the total number of time periods T.

In Table III, we provide the complexity comparison of
communication overhead and key size between our protocol
and existing protocol. The public key size is independent of T
and the private key size of the client is only logarithmic in T. It
is much improved than the slightly better solution, in which
the private key size and the public key size are both linear
with T. The difficulty of the challenge overhead in our
protocol and existing protocol are both O(k) (here k is the

security parameter). The difficulty of the response overhead is
O((logT)k) in our protocol because the response proof wants
to hold the set of verification values X j . Usually speaking, the
difficulties of communication overhead and key size in our
protocol are at most logarithmic in T, which is completely
suitable in practice.

V. CONCLUSION
In this paper, we revise on how to compact with the client’s
key coverage in cloud storage auditing. We suggest a new
pattern called auditing protocol with key coverage flexibility.
In such a protocol, the honesty of the data beforehand stored
in cloud can unmoving be established still if the client’s
current secret key for cloud storage auditing is uncovered. We
celebrate the classification and the safety model of auditing
protocol with key-coverage flexibility, and after that suggest
the first sensible solution. The safety proof and the asymptotic
presentation estimation show that the projected protocol is
protected and proficient.

REFERENCES

1] K. Yang and X. Jia, “Data storage auditing service in cloud
computing: Challenges, methods and opportunities,” World
Wide Web, vol. 15, no. 4, pp. 409–428, 2012.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik,
“Scalable and efficient provable data possession,” in Proc. 4th
Int. Conf. Secur. Privacy Commun. Netw

[3] F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, Y.
Deswarte, and J.-J. Quisquater, “Efficient remote data
possession checking in critical information infrastructures,”
IEEE Trans. Knowl. Data Eng., vol. 20, no. 8, pp. 1034–1038,
Aug. 2008.

[4] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-
PDP: Multiple replica provable data possession,” in Proc. 28th
IEEE Int. Conf. Distrib.Comput. Syst., Jun. 2008, pp. 411–420.

[5] H. Shacham and B. Waters, “Compact proofs of
retrievability,” in Advances in Cryptology—ASIACRYPT.
Berlin, Germany: Springer-Verlag, 2008, pp. 90–107.

[6] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly
auditable secure cloud data storage services,” IEEE Netw.,
vol. 24, no. 4, pp. 19–24, Jul./Aug. 2010.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1042
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

[7] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau,
“Efficient provable data possession for hybrid clouds,” in
Proc. 17th ACM Conf. Comput. Commun. Secur. 2010, pp.
756–758.

[8] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik,
“Scalable and efficient provable data possession,” in Proc. 4th
Int. Conf. Secur. Privacy Commun. Netw.

[9] K. Yang and X. Jia, “An efficient and secure dynamic
auditing protocol for data storage in cloud computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp. 1717–1726, Sep.
2013.

[10] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacypreserving public auditing for secure cloud storage,”
IEEE Trans. Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013.

[11] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling
public auditability and data dynamics for storage security in
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 5, pp. 847–859, May 2011.

[12] Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An, and C.-J.
Hu, “Dynamic audit services for outsourced storages in
clouds,” IEEE Trans. Services Comput., vol. 6, no. 2, pp. 227–
238, Apr./Jun. 2013.

[13] C. Erway, A. Küpçü, C. Papamanthou, and R.Tamassia,
“Dynamic provable data possession,” in Proc. 16th ACM
Conf. Comput. Commun. Secur. 2009, pp. 213–222.

[14] H. Wang, “Proxy provable data possession in public
clouds,” IEEE Trans. Services Comput., vol. 6, no. 4, pp. 551–
559, Oct./Dec. 2013.

[15] B. Wang, B. Li, and H. Li, “Public auditing for shared data
with efficient user revocation in the cloud,” in Proc. IEEE
INFOCOM, Apr. 2013, pp. 2904–2912.

[16] H. Wang, Q. Wu, B. Qin, and J. Domingo-Ferrer,
“Identity-based remote data possession checking in public
clouds,” IET Inf. Secur., vol. 8, no. 2, pp. 114–121, Mar. 2014.

[17] T. Stewart. (Aug. 2012). Security Policy and Key
Management: Centrally Manage Encryption Key. [Online].
Available: http://www.slideshare. Net/Tina-stewart/security-
policy-and-enterprise-key-management-fromvormetric

[18] Microsoft. (2014). Key Management. [Online].
Available: http://technet.microsoft.com/en-
us/library/cc961626.aspx
[19] FBI. (2012). Is Your Computer Infected with DNSChanger
Malware?. [Online]. Available:
http://www.fbi.gov/news/news_blog/is-yourcomputer-
Infected-with-dnschanger-malware

[20] FBI. (2011). Botnet Operation Disabled. [Online].
Available: http://www.fbi.gov/news/stories/2011/april/botnet_
041411

[21] M. Bellare and S. Miner, “A forward-secure digital
signature scheme,” in Advances in Cryptology—CRYPTO.
Berlin, Germany: Springer-Verlag, 1999, pp. 431–448.

[22] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-insulated
public key cryptosystems,” in Advances in Cryptology—
EUROCRYPT. Berlin, Germany: Springer-Verlag, 2002, pp.
65–82.

[23] G. Itkis and L. Reyzin, “SiBIR: Signer-base intrusion-
resilient signatures,” in Advances in Cryptology—CRYPTO.
Berlin, Germany: Springer-Verlag, 2002, pp. 499–514.

[24] R. Canetti, S. Halevi, and J. Katz, “A forward-secure
public-key encryption scheme,” in Advances in Cryptology—
EUROCRYPT. Berlin, Germany: Springer-Verlag, 2003, pp.
255–271.

[25] F. Hu, C.-H. Wu, and J. D. Irwin, “A new forward secure
signature scheme using bilinear maps,” Cryptology ePrint
Archive, Tech. Rep. 2003/188, 2003. [Online]. Available:
http://eprint.iacr.org/2003/188

IJSER

http://www.ijser.org/
http://www.slideshare/
http://technet.microsoft.com/en-us/library/cc961626.aspx
http://technet.microsoft.com/en-us/library/cc961626.aspx
http://www.fbi.gov/news/stories/2011/april/botnet_041411
http://www.fbi.gov/news/stories/2011/april/botnet_041411

	I. INTRODUCTION
	II. PROBLEM FORMULATION
	A. System Model
	B. Security Model
	A. Naïve solution
	B. Slightly Better Solution
	C. Our Cloud Storage Auditing With Key-Exposure Resilience
	D. Description of Our Protocol:

	IV. SECURITY AND PERFORMANCE
	A. Security analysis
	B. Performance analysis

	V. CONCLUSION

